Coloring 3-Colorable Graphs using SDPs'

* In this lecture we look at a graph coloring problem. The input is an undirected graph G = (V, E)
and the goal is to “color” every vertex from a “palette” of as few colors so that any two neighboring
vertices obtain different colors. More precisely, we want to find the smallest cand amap x : V —
{1,2,...,c} such that for any (u,v) € E, we have x(u) # x(v). This smallest c is called the
chromatic number of the graph G.

Coloring is inherently related to the independent set question in a graph. Indeed, observe that if x is
a valid coloring then all the vertices obtaining the same color must be an independent set. Therefore,
the graph coloring problem is simply the question of “packing” the graph into as few independent sets
as possible. In particular, if x(G) of a graph is small, then the independent sets must be large. More
precisely, the graph must have an independent set of size > ﬁ where n is the number of vertices.

* Finding a large independent set, and therefore the coloring problem, is a notoriously hard problem
to approximate. One therefore looks at special cases where one can design non-trivial algorithms.
One “simple” class of graphs where the independent set problem can be solved exactly are bi-partite
graphs. Now note that a bipartite graph is precisely graphs which have x(G) = 2. Therefore, coloring
a graph G with x(G) = 2 with two colors is easy, and so is finding the maximum independent set in
such graphs.

In this lecture we look at the “next hardest case”. Suppose someone promises that x(G) = 3, can
we color it in 3 colors? In other words, given the promise that graph G is tripartite, can we find the
tri-partition? Turns out this problem is NP-hard. So, we ask what is the fewest number of colors one
can color such a promised graph in? Or, and this is the question we will focus on, what’s the largest
independent set we can find in such graphs.
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Exercise: sese Find an independent set of size Q)(\/n) in a 3-colorable graph, and then use it to
color a 3-colorable graph with O(\/n) colors. To make it precise, given an arbitrary graph G,
either find an independent set of size Q)(\/n) or prove that the graph is not 3-colorable.

* We further assume we have an upper bound on the maximum degree of G is d and our answer will
be in terms of this parameter. One can always think of d = n. Note that a simple greedy algorithm
returns an independent set of size 2(n/d). More relevant to us, and something that we saw in the
randomized rounding lectures, one can obtain such sized independent set using randomized rounding
+ alteration method. It is good to remind oneself of that as we will use a similar method. However,
our randomized process will be guided by an SDP. To kill the suspense, we will be able to return an
independent set of size Q(n/d'/3) where the "is hiding logarithmic factors. So, we would be able
to obtain an independent set of size roughly n2?/3 instead of v/n which was asked for in the above
exercise. In turn, we would be able to color the 3-colorable graph using O(dl/ 3) colors. And if
you have done the above exercise, then armed with the above result you would also be able to color
3-colorable graphs using O(n'/4) colors.
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* An SDP for certifying 3-colorable graphs. We start by writing an SDP which would return a feasible
solution if GG is 3-colorable. Contrapositively, if the SDP doesn’t return a feasible solution, we can
assert that the graph is not 3-colorable. Then, we use the SDP solution to find a large independent set.

The main observation is this. If G is 3-colorable, then there are three independent subsets A, B, C
of vertices which partition V. We can therefore embed the vertices on to a unit circle on the 2-
dimensional plane via ¢ : V — R? such that for every edge (i, j) € E we have that the angle between
¢(i) and ¢(j) is precisely 120°. See Figure 1 for an illustration.

Figure 1: The graph can be 3-colored using red (trellis), blue (checkered), and green (diagonal). The
embedding on to the unit circle is shown on the right.

In other words, if G is 3-colorable, then 3uy, . .., u, € R? with ||u;||, = landu/ u; = —3, V(i,j) €
E. Noting that the n x n matrix X;; = u, u; is a PSD matrix?, we get that if G is 3-colorable,

1
{(XeR™" : X =1, X;; = —5 V(i,j) € E, X =0} isnon-empty (3Col SDP)
This can be checked using an SDP. In other words, we can write an SDP to check if the RHS is empty
or not, and if it is empty, we can assert G is not 3-colorable. Next, we show what to do with the

feasible X = 0 that is returned by the SDP.

* SDP rounding. Given the PSD matrix X we can obtain n unit vectors vi,...,v, € R? such that
vlT v; = —0.5 for all edges (i,j) € E. If d were 2, then we would be done as that would imply all

the vectors are clumped at the three endpoints of an equilateral triangle, and all the coincident points
must be independent. However, d could be as large as n, and then it is not immediately clear how to
obtain a large independent set.

We first try to describe the idea qualitatively. As in the case of maximum cut, we have the vertices
spread on the surface of a high-dimensional orange. This time, we know that endpoints of any edge
are indeed “quite far” from each other. In particular, if we focus on the plane containing the center
and the endpoints of a single edge, then they form the 120 degree angle between them. Now suppose
we slice this orange using a random hyperplane and pick the vertices .S on one of the sides uniformly
at random. The probability a vertex is picked in S is then 1/2. Furthermore, for any fixed edge, the
probability of picking both endpoints in S, a la the Goemans-Williamson analysis, is 1 — 29 = 1/3.

~ 180
The issue, however, is that there could be many edges (d many) incident to a vertex 4, and so we could

2X = UUT where U is the n x 2 matrix formed by taking u; as the ith row; and therefore for any v € R", we have
v Xv =37?_ (v U,)? where U, is the th column of U. And so, v Xv > 0 implying X = 0.



pick ~ d/3 many neighbors of 7 in S as well. If we then tried “fixing” by deleting a vertex per edge
sampled, we may end up deleting almost the whole set S.

The fix is not to slice the orange through the center but through a “lesser circle”. Rethinking the orange
as our earth, instead of slicing through the equator, slice through the tropic of cancer (or, perhaps more
closer to the truth, at much higher latitudes), and then pick the smaller region. Now, the probability of
picking a vertex will drop; larger the latitude, smaller is this probability. However, and we show this
precisely, since endpoints of an edge are “far away”, the chances of picking both end points of an edge
becomes much smaller. And indeed, the correct latitude to slice at is determined by the parameter d,
and is figured so as to balance out the alteration step and the sampling step. We now give the formal
description.

1: procedure KMS ROUNDING((G, X solution to (3Col SDP)):

28 Obtain vectors v; € R? such that X = VTV]

3: Sample a random Gaussian vector g € R,

4: > Sample g; € N(0,1) for1 <i<dandg = (91,---,9d)

5 Letlj :={i eV : v;rg > c}. > Parameter c is the “latitude” and is set to QMT(M).
6 For any (i,7) € F if both ¢ and j are in I;, add them to D.
7 return [ < I; \ D.

* Analysis. It should be clear that [ is an independent set by design. We prove the following theorem.

Theorem 1. If G has maximum degree d and ¢ = /% In(2d), then the expected size of I

g n
returned by KMS ROUNDING is {2 (m).

Before we dive into this, we state some facts about Gaussian random variables.

Fact 1 (Gaussian Facts).

a. If g is a random Gaussian vector in R¢ and v is another vector in R%, then G := v'g
satisfies G ~ N (0, ||v||,), that is, it is a standard Gaussian whose standard deviation is the
Euclidean length of v.

b. Let G ~ N(0,1) and define, for z > 0, erf(2) := Pr[G > z| = rfoo 7?dt This is
just 1 minus the CDF of the Gaussian. Then, it can be shown for all £ > 0,

1 2 1 -
(t_t?’) P12 < Vom - erf(t) < e =2 (1)
If G ~ N(0,0), then Pr[G > z| = erf(z/0).

* The main observation is this: if (¢, 7) is an edge, then

-
Vi +vlly = [1Villy + [[vjlly +2vi v; =1



That is, the sum of these two vectors are also unit vectors. In particular, they are “decently” far away.
Now we have all the ingredients to prove Theorem 1.

First we lower bound the size of |I7| as follows.

Exp[|i]] =) Prlic ]| =) Pr[ v/g > =n-erf(c)
ieV ieV NN"(OJ)

where we used Fact 1(a) to say that VZ.T g is a standard gaussian, since v; is a unit vector.
Next we upper bound the size of | D] as follows.
Exp[|D|] = 2- ) Prlic] and j€ I]
(i.j)eE

= 2. Z Pr[v, g > ¢ and VJ-ngc]
(i.)€E

= (Vi+Vj)Tg220

2- Z Pr| vi+v;) g > 2(]
(1,j)EE N

IN

~N(0,1) since ||v;+v;|l,=1
< nd - erf(2c)

where last inequality follows since the number of edges is < nd/2 and Fact 1(a).

Therefore,

Exp||I|] = Exp||1|] — Exp[|D|] > n -erf(c) —nd - erf(2¢) > n - (21602/2 _ 2deZc2>
c c

where we have used Fact 1(b) for the last inequality.

Substituting ¢ = /2 In (2d), we get

Bxp{r] > — e —a ()
X — e 3 = _—
=y 21 (2d) d'/3v/nd

It is worthwhile comparing the above randomized algorithm to find an independent set with an older
randomized algorithm we saw in the course: sampling vertices independently and then fixing. More
precisely, suppose we sampled every vertex independently with probability p to get the set I; which
has cardinality np in expectation. Then, for every edge (7, ;) the probability both end points are
sampled is p?, and thus Iy, in expectation, contains ~ ndp? edges. When we fix the solution (by
deleting endpoints of edges in I1), we get the resulting independent set of size ~ np — ndp?. This
gives us the correct sampling probability of p = ©(1/d) and an independent set of size ©(n/d).

The KMS algorithm is a dependent randomized rounding algorithm. The probability of picking a
vertex ¢ € I1 isp ~ e~ /2 (ignoring the 2c in the denominator). However, the probability that two
endpoints of an edge (i, j) are both picked in I; is not p? but ~ p* ~ e=2¢ In particular there is a
significant negative correlation between the events ¢ € [; and 7 € I1. And this is what really leads to
the improvement over naive independent rounding.



Exercise: s Generalize the above algorithm for k-colorable graphs. In particular, if we know
G is k-colorable, what is the SDP which would have a feasible solution? And how would you
modify the KMS algorithm to round the solution of the SDP? What is the number of colors you
get as a function of k?

* To get the coloring result we use a standard peeling argument. We start by finding an independent set
of size as prescribed above. We delete this independent set and all edges incident. Note the maximum
degree upper bound d can only go down. We can keep doing so till all the vertices are picked in

some independent set. We leave it as a simple exercise to show that the number of independent sets is
O(d'/?).

Notes

Coloring 3-colorable graphs is an outstanding problem in approximation algorithms. The O(4/n)-color
algorithm is from the paper [7] by Wigderson. This was improved in this paper [1] by Blum to O(n?%/®)
colors. The algorithm described in these notes using SDPs is from the paper [4] by Karger, Motwani, and
Sudan (hence the name KMS), and when combined with Wigderson’s algorithm gives an O(nl/ 4)-coloring
algorithm. A chain of improvements, both combinatorial and using SDP methods followed, and the current
best algorithm is one from the paper [5] by Kawarabayashi and Thorup, and it uses O(n0'19996) colors.

On the hardness front, it is known that it is NP-hard to color 3-colorable graphs with 4 colors; this result
was first proved in the paper [6] by Khanna, Linial, and Safra, and then proved using elementary means in
the paper [3] by Guruswami and Khanna. This is the best NP-hardness known! If one assumes a variant of
the Unique Games Conjecture, then the paper [2] proved that it is NP-hard to color 3-colorable graphs with
O(1) colors.
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